

VÁLVULA GUILHOTINA COM MANGAS ELASTOMÉRICAS

O modelo VG é uma válvula bidirecional de tipo wafer, dotada de duas mangas elastoméricas com alma metálica projetada para utilização no tratamento de fluidos abrasivos e com aplicações nos segmentos de:

- Mineração
- Químico
- Etc.

- Energético
- Tratamento de água e efluentes

Tamanhos:

DN 2"/50mm a 36"/DN 900mm (DN superiores sob consulta)

Pressão de trabalho:

DN 2"/ 50mm a 16"/400mm 10 bar (150 psi)

DN 18"/450mm a 24"/600mm 6 bar (90 psi) ou 10 bar (150 psi)(1)
DN 28"/700mm a 36"/900mm 5 bar (75 psi) ou 10 bar (150 psi)(1)

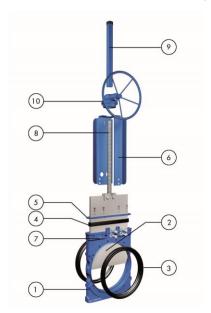
Pressões e/ou diâmetros superiores sob consulta

(1) Faca em duplex para 10 bar (150 psi)

Normas de conexão padrão:

EN1092 PN 10 e ASME B16.5 (clase 150)

Outras usuais: (sob consulta)


EN1092 PN 6 EN1092 PN 16 EN1092 PN 25

BS "D" e "E" Outras sob consulta

Diretivas:

Para Diretivas da UE e outros Certificados, por favor consulte o documento: Conformidade com diretivas e certificados - Válvulas Guilhotina - Catálogos e Folhas de dados

Todas as válvulas ORBINOX são testadas, antes de serem enviadas

LISTA DE COMPONENTES PADRÃO							
Componente:	Materiales:						
1- Corpo	Nodular A536 (60-40-18) / 0.7040 / GJS 400						
2- Faca	AISI 304 (1.4301)/AISI 316 (1.4401)						
3- Mangas	Borracha natural / EPDM						
4-Gaxeta	EPDM						
5- Preme-gaxeta	A570 GR.40 / 1.0044 com revestimento de EPÓXI						
6- Suporte do acionamento	A570 GR.40 / 1.0044 com revestimento de EPÓXI						
7- Engraxadeira	Aço carbono zincado						
8- Haste	Aço inoxidavel						
9- Protetor da haste	A570 GR.40 / 1.0044 com revestimento de EPÓXI						
10- Caixa redutora	-						

CARACTERÍSTICAS CONSTRUTIVAS

CORPO:

Monobloco fundido, tipo wafer, para instalação entre flanges com nervuras reforçadas em diâmetros superiores, elevando a resistência do corpo. A forma construtiva interna do corpo permite que a faca seja totalmente guiada. Duas bocas laterais usinadas onde encaixam perfeitamente as mangas. Os bicos de engraxadeira permitem que a faca seja lubrificada, melhorando sua capacidade de deslizar entre as mangas. Além disso, sua forma construtiva permite drenagem pela parte inferior do corpo, onde podem ser instalados uma tampa ou um registro de limpeza. Durante a operação uma pequena quantidade de fluido pode vazar entre as mangas, permitindo que os sólidos sejam expulsos da cavidade do corpo e assegurando o curso

FΔCΔ:

Fabricada em aço inoxidável, polida em ambos os lados e de forma retangular, possui sua aresta inferior usinada. Além de reduzir atrito e danos nas sedes, este desenho permite um ótimo corte do fluido. Mediante consulta pode-se alterar o material da faca, de forma a proporcionar maiores pressões de trabalho.

MANGAS DE ELASTÔMERO:

A sede é composta por duas mangas de elevada resistência e durabilidade, feitas de borracha natural com alma metálica. Este desenho da manga permite máxima flexibilidade durante o percurso da faca, minimizando o esforço necessário para sua operação. Na posição aberta, as duas mangas ficam em contato permanente uma com a outra, garantindo a passagem plena. Não há cavidades no assento que possam causar eventual acúmulo de material e o fluido não entra em contato com as partes metálicas da válvula. Este desenho permite fácil substituição das mangas danificadas. Verifique os materiais disponíveis na página VG-6.

GAXETA:

Fabricada em EPDM, elimina possíveis vazamentos ao exterior, além de minimizar a necessidade de manutenção das gaxetas tradicionais. Em combinação com os bicos de engraxadeira, garantem um funcionamento mais eficiente da faca.

HASTE:

Fabricada em aço inoxidável, garantindo alta resistência à corrosão e vida útil elevada. O protetor da haste, além de proporcionar mais segurança a válvula, também impede o acúmulo de sujeira.

ACIONAMENTO:

Todos os acionamentos fornecidos pela ORBINOX são intercambiáveis e disponibilizados com um kit de montagem padrão que permite instalação no local.

SUPORTE DO ACIONAMENTO OU PONTE:

Fabricado em aço revestido de epóxi (aço inox disponível sob consulta). Sua construção reforçada garante grande rigidez, suportando as condições de operação mais adversas. Desenho reforçado é padrão a partir de DN 200.

REVESTIMENTO DE EPÓXI:

O revestimento de epóxi com cor padrão ORBINOX azul RAL-5015 em todos os componentes de ferro fundido e aço carbono da ORBINOX é aplicado eletrostaticamente, tornando-os resistentes a corrosão e com uma superfície de acabamento de alta qualidade.

PROTEÇÃO DE SEGURANCA DA FACA:

As válvulas automatizadas da ORBINOX são fornecidas com proteções para a faca, de acordo com normas de segurança da UE. Sua forma construtiva impede que quaisquer objetos sejam apanhados acidentalmente enquanto a faca está em movimento.

OUTRAS OPÇÕES

Registros de limpeza (Fig. 1 e 2):

Há dois tipos de registros de limpeza que podem ser instalados na parte inferior do corpo da válvula. Eles permitem a remoção periódica ou contínua de sólidos que possam se acumular durante a operação da válvula. Eles devem ser sempre conectados a uma linha de drenagem.

(Fig. 1) Placa plana

(Fig. 2) Disegn tubular

Gaxeta estanque convencional (Fig. 3 and 4):

A válvula VG permite utilizar gaxeta estanque convencional com seu preme gaxeta, garantindo uma estanqueidade total na pressão máxima de operação.

(Fig. 3) Gaxeta padrão

(Fig. 4) Opcional: Gaxeta estanque convencional

Recomendamos consulta prévia com nosso departamento técnico

OUTRAS OPÇÕES

Sistema de bloqueio (na abertura ou fechamento) (Fig. 5):

A válvula padrão está preparada para a instalação de um pino de bloqueio em situações de emergência ou de manutenção.

(Fig.5)

Outros materiais construtivos:

Outros materiais podem ser utilizados, tais como aço carbono, aços inoxidáveis (AISI 316, AISI 317, 2205, ...), ligas especiais (254SMO, Hastelloys, ...), etc.

Válvulas mecanosoldadas:

A ORBINOX projeta, fabrica e fornece válvulas especiais mecanosoldadas para condições especiais de processo (tamanhos grandes e/ou altas pressões).

Sistema de insuflamento (Fig. 6):

Permitem a limpeza de sólidos depositados dentro da cavidade do corpo e das mangas. Esta opção pode ser utilizada em conjunto com os registros de limpeza.

(Fig.6)

Revestimentos da faca:

As facas podem ser fornecidas com diferentes tipos de revestimento para melhorar sua resistência ao desgaste e à corrosão, aderência, etc.

Recomendamos entrar em contato com nosso departamento técnico

TIPOS DE ACIONAMENTOS

MANUAL:

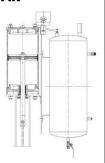
Volante (haste ascendente)
Caixa redutora com volante
Outros (sob consulta...)

AUTOMÁTICO:

Atuador elétrico (haste ascendente) Cilindro pneumático (simples e dupla ação) Cilindro hidráulico

Todos os acionadomentos fornecidos pela ORBINOX são intercambiáveis

SISTEMAS DE FALHA SEGURA


Utilizados em válvulas com acionamento pneumático

SIMPLES AÇÃO (RETORNO POR MOLA)

- Disponível de DN 50 a DN 200
- Pressão de alimentação: mín.5 bar - máx.10 bar
- Opções:
- Seguro contra falha pneumática ou eléctrica (Abre em caso de falha)
- Seguro contra falha pneumática ou eléctrica (Fecha em caso de falha)
- Outras opções sob consulta

DUPLA AÇÃO COM TANQUE DE AR

- Disponível para todos os tamanhos
- Pressão de alimentação: mín.3.5 bar - máx.10 bar
- Opcões:
- Seguro contra falha pneumática ou eléctrica (Abre em caso de falha)
- Seguro contra falha pneumática ou eléctrica (Fecha em caso de falha)
- Outras opções sob consulta

ACESSÓRIOS

Sistema de bloqueio

Batentes mecânicos

Acionamento manual de emergência

Válvulas solenoide

Posicionadores

Sensores de fim de curso

Sensores de proximidade

Pedestais

Prolongamentos de haste

Para maiores informações consulte o catálogo da EX

Recomendamos entrar em contato com nosso departamento técnico

QUADRO DE TEMPERATURA

MANGAS GAXETAS

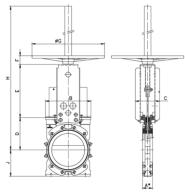
Material T.I	Min/Max(°C)	Aplicações		Material	T.Max. (°C)
Borracha Natura	al -30/75 Ge	eneral		EPDM	120
EPDM	-30/120 Áci	idos/óleos não minerais		Fibra Sintética Teflonada (ST)	250
Neoprene	-30/90 Óle	eos/Solventes			
Clorobutil	-30/125 Alto	as temperaturas			
NBR	-30/120 Hid	drocarbonetos/Óleos/Gra	xas		

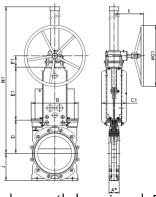
Todos são reforçados com uma alma metálica. Para outras temperaturas e aplicações, entre em contato com nosso departamento técnico

SEDE

MANGAS DE ELASTÔMERO

O fechamento da válvula VG é feito por suas duas mangas características de elastômero de alta resistência, que proporcionam uma vedação estanque tanto entre os flanges como entre as mangas. Essas mangas têm uma alma metálica que lhes proporciona uma grande resistência em condições de trabalho e pressões exigentes.


FECHADO


VOLANTE (haste ascendente)

VOLANTE

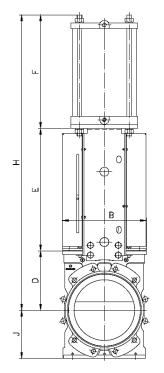
- Composto por: Volante em ferro fundido revestido de epóxi
 - Suporte do acionamento
 - Haste e porca da haste
 - Protetor da haste
- Disponível de DN 50 a DN 600 (maiores sob consulta)
- Opções (sob consulta):
 - Dispositivo de bloqueio
 - Prolongamentos de haste e pedestais
 - Fole de PVC
- Nota: para válvulas maiores de DN 200 caixa redutora é recomendada (força total no volante > 250 N)

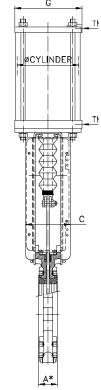
REDUTOR

- Recomendado para válvulas maiores de DN 200
- Composto por:
 - Haste e protetor da haste
 - Ponte
 - Acionamento com caixa redutora
- Disponível de DN 200 a DN 900
- Opções (sob consulta):
 - Volante com corrente
 - Dispositivo de bloqueio
 - Prolongamento de haste e pedestais
 - Fole de PVC

DN	REDUTO	A1*	A2*	В	C	C1	D	E	E1	F	F1	ØG	ØG1	Н	H1	J	1.
50	-	54	60	144	100	-	105	147	-	47	-	225	-	445	-	63	-
65	-	54	60	164	100	-	115	162	-	47	-	225	-	470	-	70	
80	-	57	63	179	100	-	124	177	-	47	-	225	-	495	-	90	-
100	-	57	63	171	107	-	140	193	-	67	-	310	-	645	-	100	-
125	-	63,5	69	200	107	-	150	234	-	67	-	310	-	700	-	122	-
150	-	63,5	69	238	107	-	175	259	-	67	-	310	-	745	-	129	-
200	FLO.4	76	83	295	165	165	205	326	315	70	109	410	300	945	1040	164	200
250	FLO.4	76	83	346	-	185	245	-	389	-	84	-	300	-	1060	199	200
300	FLO.4	82,5	90	395	-	250	280	-	446	-	84	-	300	-	1460	231	200
350	FLO.4	82,5	90	450	-	250	325	-	501	-	84	-	450	-	1530	257	220
400	FLO.4	95	102	511	-	270	350	-	558	-	84	-	450	-	1640	291	220
450	FLO.4	95,5	103	564	-	290	420	-	625	-	84	-	450	-	1750	317	220
500	FL1.6	121	129	623	-	290	462	-	686	-	102	-	650	-	1930	345	288
600	FL1.6	121	129	730	-	290	510	-	780	-	102	-	650	-	2150	413	288
700	FL1.6	181	190	845	-	320	575	-	896	-	102	-	650	-	2615	475	288
750	FL1.6	187	195	920	-	320	605	-	985	-	102	-	650	-	2730	500	288
800	FL1.6	206	214	1008	-	320	655	-	1085	-	102	-	650	-	2880	550	288
900	FL1.6	225,5	234	1105	-	320	705	-	1165	-	102	-	650	-	3010	620	288

A1*: entre flanges com válvula instalada


A2*: dimensão mínima necessária para a instalação



CILINDRO PNEUMÁTICO

- O acionamento pneumático padrão (cilindro de dupla ação aberto/fechado) é composto de:
 - $\emptyset \le 300$: Camisa de alumínio
 - $\emptyset \ge 350$: Camisa em composite
 - Tampas em alumínio
 - Haste do pistão em aço inoxidável (AISI 304)
 - Pistão de aço revestido com borracha nitrílica
 - Foles de PVC
- Disponível de DN 50 a DN 600
- Pressão de alimentação: 6 bar
- Desenho reforçado das placas suporte é padrão a partir de DN 200
- Opções (sob consulta):
 - Camisas e tampas com anodização dura
 - Camisas e tampas em aço inoxidável sob consulta
 - Sistema de bloqueio
 - Acionamento manual de emergência
 - Sistemas de falha segura
- Instrumentação: (sob consulta)
 - Posicionadores
 - Reguladores de fluxo
 - Válvulas solenoide
 - Unidade de preparação de ar
 - Nota: a fim de garantir o funcionamento correto do cilindro pneumático para as pressões do catálogo, é necessária uma pressão de alimentação de 6 bar. Para pressões inferiores, recomendamos entrar em contato com nosso departamento técnico

DN	ØCIL.	TM	A1*	A2*	В	C	D	E	F	G	H	J
50	C100/80	1/4"	54	60	144	100	105	211	200	115	516	63
65	C100/95	1/4″	54	60	164	100	115	221	214	115	550	70
80	C125/110	1/4"	57	63	179	100	124	257	240	140	621	90
100	C125/130	1/4"	57	63	1 <i>7</i> 1	107	140	270	258	140	668	100
125	C160/160	1/4"	63,5	69	200	107	150	369	298	1 <i>75</i>	817	122
150	C160/185	1/4"	63,5	69	238	107	175	395	323	1 <i>75</i>	893	129
200	C200/240	3/8″	76	83	291	165	205	464	398	220	1067	164
250	C250/290	3/8″	76	83	346	185	245	505	470	277	1220	199
300	C300/345	1/2″	82,5	90	398	250	280	656	538	335	1473	231
350	C350/395	3/4"	82,5	90	450	290	325	712	650	444	1687	257
400	C350/450	3/4"	95	102	511	290	350	769	705	444	1824	291
450	C400/500	3/4"	95,5	103	564	290	420	838	767	515	2025	317
500	C400/560	3/4"	121	129	623	290	462	897	839	515	2198	345
600	C400/655	3/4"	121	129	730	290	510	989	921	515	2420	413

A1*: entre flanges com válvula instalada

A2*: dimensão mínima necessária para a instalação

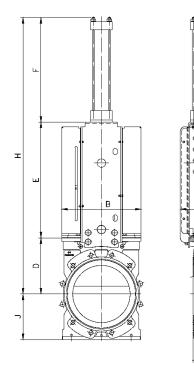
CILINDRO HIDRÁULICO

- O acionamento hidráulico consiste em um cilindro de dupla ação, em conformidade com a ISO 6020/2
- Disponível de DN 50 a DN 900 com foles em PVC

• Pressão hidráulica: 100 bar

• Pressão hidráulica máxima: 160 bar

• Opções:


- Indicadores de pressão: mecânicos e indutivos

- Sistema de bloqueio

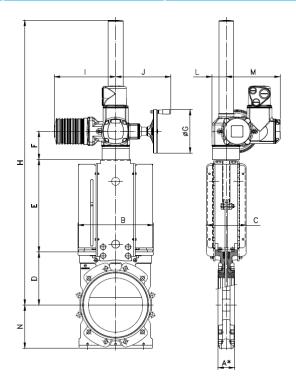
- Transdutores de posição

- Grupos hidráulicos

- Painéis elétricos

DN	ØCIL.	TM	A1*	A2*	В	C	D	E	F	Н	J
50	C32/80	1/4"	54	60	144	100	105	211	223	539	63
65	C32/95	1/4″	54	60	164	100	115	221	238	574	70
80	C32/110	1/4"	57	63	179	100	124	257	253	634	90
100	C32/130	1/4″	57	63	1 <i>7</i> 1	107	140	270	273	683	100
125	C32/160	1/4"	63,5	69	200	107	150	369	303	822	122
150	C40/185	3/8″	63,5	69	238	107	1 <i>75</i>	395	355	925	129
200	C50/240	1/2″	76	83	291	165	205	464	413	1082	164
250	C63/290	1/2″	76	83	346	185	245	505	468	1218	199
300	C80/345	3/4"	82,5	90	398	250	280	656	544	1480	231
350	C80/395	3/4"	82,5	90	450	290	325	712	594	1631	257
400	C80/450	3/4"	95	102	511	290	350	769	649	1768	291
450	C100/500	3/4"	95,5	103	564	290	420	838	710	1968	317
500	C100/560	3/4"	121	129	623	290	462	897	771	2130	345
600	C125/653	1″	121	129	730	290	510	989	853	2352	413
700	C100/765	3/4"	181	190	845	320	575	1100	976	2651	475
750	C100/815	3/4"	187	195	920	320	605	1150	1026	2781	500
800	C125/870	1″	206	214	1008	320	655	1205	1110	2970	550
900	C125/975	1″	225,5	234	1105	320	705	1310	1215	3230	620

A1*: entre flanges com válvula instalada


A2*: dimensão mínima necessária para a instalação

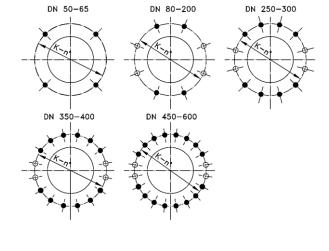
ACIONAMENTO ELÉTRICO (haste ascedente)

- Acionamento automático composto de:
 - Motor elétrico
 - Suporte do motor (conexões padronizadas conforme ISO 5210/DIN 3338)
- O motor elétrico padrão é equipado com:
 - Volante manual de emergência
 - Sensores fim de curso (aberto / fechado)
 - Limitadores de torque
- Disponível de DN 50 a DN 900
- Grande variedade de tipos e marcas disponíveis de acordo com as necessidades do cliente
- Opções (sob consulta):
 - Sistema de bloqueio
 - Fole em PVC

DN	A1*	A2*	В	C	D	E	- F	ØG	H	-1	J	- L	M	N
50	54	60	144	100	105	145	143	160	603	265	249	62	238	63
65	54	60	164	100	115	160	143	160	628	265	249	62	238	70
80	57	63	179	100	124	185	143	160	662	265	249	62	238	90
100	57	63	171	107	140	195	143	160	688	265	249	62	238	100
125	63,5	69	200	107	150	235	143	160	1100	265	249	62	238	122
150	63,5	69	238	107	175	260	143	160	1158	265	249	62	238	129
200	76	83	291	165	205	330	155	200	1272	283	254	65	248	164
250	76	83	346	185	245	405	155	200	1387	283	254	65	248	199
300	82,5	90	398	250	280	462	155	200	1454	283	254	65	248	231
350	82,5	90	450	290	325	520	158	315	1602	389	336	90	286	257
400	95	102	511	290	350	580	158	315	1690	389	336	90	286	291
450	95,5	103	564	290	420	645	158	409	1822	389	336	90	286	317
500	121	129	623	290	462	705	158	400	1925	389	339	90	286	345
600	121	129	730	290	510	804	158	500	2120	430	365	115	303	413
700	181	190	845	320	575	935	158	400	2770	389	339	90	286	475
750	187	195	920	320	605	967	190	500	2880	430	365	115	303	500
800	206	214	1008	320	655	1078	190	500	3035	430	365	115	303	550
900	225,5	234	1105	320	705	1170	190	500	3180	430	365	115	303	620

A1*: Entre flanges com válvula instalada

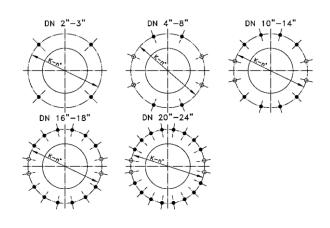
A2*: dimensão mínima requerida para sua instalação



DETALHES DO FLANGE E DA FURAÇÃO

EN 1092 PN10

DN	K	nº	M	T	ф ф
50	125	4	M-16	10	4 - 0
65*	145	4	M-16	12	4 - 0
80	160	8	M-16	12	4 - 4
100	180	8	M-16	12	4 - 4
125	210	8	M-16	14	4 - 4
150	240	8	M-20	14	4 - 4
200	295	8	M-20	16	4 - 4
250	350	12	M-20	16	8 - 4
300	400	12	M-20	20	8 - 4
350	460	16	M-20	20	12 - 4
400	515	16	M-24	20	12 - 4
450	565	20	M-24	20	16 - 4
500	620	20	M-24	25	16 - 4
600	725	20	M-27	24	16 - 4



^{*} A furação do flange DN-65 PN10/16 conforme EN1092 permite 4 ou 8 furos. O projeto da Orbinox da DN-65 PN10/16 possui 4 furos

FUROS ROSCADOS CEGOS FUROS PASSANTES

ASME B16.5, classe 150

DN	K	nº	M	T	• •
2″	4 3/4"	4	5/8" - 11 UNC	3/8″	4 - 0
2 1/2"	5 ½"	4	5/8" - 11 UNC	1/2″	4 - 0
3″	6"	4	5/8" - 11 UNC	1/2″	4 - 4
4"	7 1/2"	8	5/8" - 11 UNC	1/2″	4 - 4
5"	8 1/2"	8	3/4" - 10 UNC	9/16"	4 - 4
6″	9 1/2"	8	3/4" - 10 UNC	9/16"	4 - 4
8″	11 ¾"	8	3/4" - 10 UNC	5/8″	4 - 4
10″	14 1/4"	12	7/8" -9 UNC	5/8″	8 - 4
12″	1 <i>7</i> ″	12	7/8" -9 UNC	3/4"	8 - 4
14"	18 ¾"	12	1" - 8 UNC	3/4"	8 - 4
16″	21 1/4"	16	1" - 8 UNC	3/4"	12 - 4
18″	22 ¾"	16	1 1/8" - 7 UNC	3/4"	12 - 4
20″	25"	20	1 1/8" - 7 UNC	15/16"	16 - 4
24"	29 1/2"	20	1 1/4" - 7 UNC	15/16"	16 - 4

